
kg/kmole; F, heat and mass exchange surface, m2; n, number of components in the mixture; 
R*, universal gas constant; J/(kmole'K). Subscripts: i) vaporization zone; 2) moisture 
zone; i) component of the vapor or the fluid; s) particle surface; 5) vaporization surface; 
m) material; c) particle center; sat) saturation; vr) system of vapor removal; fr) free; 
C) capillary; f) fluid; I) initial; con) condenser; vp) vacuum pump; e) equilibrium. 
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THERMAL CONDUCTIVITY OF MOIST POROUS MATERIALS 

G. N. Dul'nev, D. P. Volkov, and V. I. Malarev UDC 536.246 

We propose both a model and a method of calculating the effective thermal con- 
ductivity of moist porous materials made of a three-component structure with 
interpenetrating components. 

In studying the thermal conductivity of moist porous materials, extensive use is made 
of the methods of modeling, which make allowance both for the structure of the material 
and for the heat and mass transfer processes occurring within. In the model proposed by 
Krisher, considerable attention is given to the significant feature of a moist porous materi- 
al, and namely, the presence of both dry and moist sections within the pores of the solid 
skeleton, and consideration is also given here to the effect of vapor diffusion on the trans- 
fer of heat [i]. However, the Krisher model is quite removed from the geometric structure 
of a real porous material and contains unknown empirical parameters a and b which describe 
the fraction (o)of the segments oriented perpendicular to the flow as well as the fraction 
(b) of the skeleton wetted by the moisture. The authors of [2] have modeled the moistened 
material of a structure with interpenetrating components, thus making it possible to do away 
with the empirical parameter a; however, the fraction of moistened sectors, as before, was 
taken into consideration by means of the parameter b. 

It has been demonstrated experimentally in [3] that the thermal conductivity of a moist- 
ened material must significantly depend on the nature of the distribution of moisture through 
the volume. A characteristic of surface wetting is generally found in the contact wetting 
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Fig. i. Model of moist porous materials: a) ~ < ~'; b) m' 
w ~ m*; c) w* ~ w ~ w"; d) ~" ~ w. i) Solid phase; 2) fluid 
phase; 3) vapor-gas phase. 
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Fig. 2. Model of nonuniform system: a) isolated fluid cluster 
i; b) overall view of infinite fluid cluster i; c) system with 
interpenetrating components. 

angle formed at the boundary between the solid, the liquid, and the gas. The thermal conduc- 
tivity of the same material, exhibiting identical moisture contents, may differ severalfold, 
depending on the nature of moisture distribution within the material. 

In [4] we find an expansion of the class of materials for which the parameter a of the 
Krisher model has been found, and in addition a large quantity of experimental data are given. 
At the same time, the presence of empirical parameters imposed a series of limitations on 
the utilization of the model in carrying out the calculation. In the following we propose 
a further development of the model of a moist porous material such as that proposed in [2], 
in which consideration is given to the effect of the nature of moisture distribution on the 
transfer processes, and in which there is also no need to utilize the empirical coefficients 
a and b. This development is based on a model with interpenetrating components containing 
the solid skeleton i, the vapor-gas mixture 3, and moisture 2 (Fig. i). For small moisture 
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contents ~ the liquid is distributed in the form of individual isolated inclusions or iso- 
lated clusters (Fig. la) which will increase with increasing m and at some critical value 
of the moisture content ~ = w' will merge into a single infinite cluster (Fig. ib). With 
a further increase in the moisture content, the liquid will occupy an increasingly greater 
fraction of the pore space (Fig. ic), and for values of m = ~" the infinite cluster will 
disappear from the gas and vapor mixture which will now be distributed in the pore space 
in the form of isolated inclusions (Fig. id). 

We calculated the effective thermal conductivity of such a model by combining the methods 
of reduction to an elementary cell with the application of flowthrough theory [5, 6]. The 
analysis of the heat and mass transfer processes in this case of a three-component system 
is accomplished by successive reduction of that system to a binary system [7]. For this, 
in the initial stage the effective thermal conductivity of the pore space is determined; 
this pore space contains the liquid and the vapor-gas mixture; in the second stage, we de- 
termine the effective thermal conductivity of the entire material. It is necessary, in this 
case, to add that in our calculations we made no provision for the components of thermal 
conductivity due to the thermocapillary effect, nor to the effect of thermal diffusion, heat 
slippage, and a number of other components. Numerical estimates were undertaken for a number 
of materials at T = 83~ and these demonstrated that the components of thermal conductivity 
due to thermal diffusion and heat slippage were smaller by an order of magnitude than the 
diffusion components, and the contribution of such transfer mechanisms as thermal osmosis, 
the thermocapillary effect, as well as the thermal-conductivity component due to the film 
flow caused by the wedge effect amounted to less than 1% of the diffusion component. In 
this connection, for the sake of calculation simplicity, we made no allowance for the con- 
tribution of these components to the effective thermal conductivity of the moist porous ma- 
terial. 

Thus, let us present the pore space containing the liquid and the vapor-gas mixture 
as a binary system consisting of interpenetrating components. The elementary cells of such 
a system, for various values of the moisture content, are shown in Fig. 2, where i and 2 
denote the components of the liquid and of the vapor-gas mixture. It was noted earlier that 
at low moisture contents (~ < w') the liquid is concentrated in an isolated cluster in a 
cube with side s (Fig. 2a), its concentration is equal to ~ = (s 3, and the isolated 
clusters are themselves separated from each other through a distance s = L - s With mois- 
ture-content values of w e w' the isolated clusters combine through transverse linkages whose 
transverse cross section S I = s 2 (Fig. 2b). In this case, according to flowthrough theory, 
there exists a limit value for the moisture content ~ < m', at which S l = 0, while when 

= ~' the first bridges are formed in "jumpwise" fashion, i.e., the isolated clusters link 
up and become infinite clusters. Subsequent growth of m leads to an increase in the area 
s 2 of the transverse cross section of the linkage until it becomes comparable to the values 
of s and s and the heterogeneous system will no longer change into a structure with inter- 
penetrating components (Fig. 2c). As ~ increases, we will subsequently note a reduction 
in the area of the transverse cross section (L 2 - s 2) for the bridges of the vapor-gas com- 
ponent, and in the case of a liquid concentration of m = m" the infinite cluster of the gas 
and vapor mixture disappears. Based on purely geometric constructions it is demonstrated 
in Appendix 1 that the values of m' and I - ~" in the average interval of porosity for the 
case in which the wetting angle % is equal to 0 ~ are approximately equal to 0.16. This con- 
clusion is in good agreement with the results of the flowthrough theory, and on the basis 
of these results we find that the flowthrough threshold for three-dimensional space in the 
case of a two-component system is equal to 0.15 [5, 6, 8]. 

Calculation of the effective thermal conductivity 112 of a nonuniform binary system 
consisting of vapor-gas mixture 2 and liquid i with thermal conductivities 12 and ~i can 
be carried out with the formula proposed in [6]: 

~, 1 - - ( 1 - - ~ ) L  1 " ( 1 - - ~ ) ~  . ' 

where  
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i (r176176176 ) j' 'l -- o, < o.5, 

I ( % - - ~  1'6' ~ ~  

=/o/, m< 0.5, 
~ It0", o >  0,5; 

--_ s-- S~----12; S , ~ : ( 1 - -  l~)11; 

(2) 

The subscripts i and 2 pertain to the liquid and vapor-gas components, respectively. 

The thermal conductivity of the vapor-gas mixture i 2 = Ig + i v is equal to the sum of 
the thermal conductivity Ig of the gas and the thermal conductivity i v caused by the diffu- 
sion transfer of the vapor in the pore space. The value of i v is determined from the fol- 
lowing relationship [i, 9]: 

DM P dPv 
~v -- r. (3) 

P -  aT 

We will subsequently propose a method for the determination of the diffusion resistance 
factor ~ = D/Dpor, equal to the ratio of the vapor-diffusion coefficient D in air and in 
the porous body Dpo r. 

In the second stage, following the familiar formulas [5, 7], we will determine the ef- 
fective thermal conductivity % of the moist material, which can be presented in the form 
of a structure consisting of interpenetrating components made of a solid skeleton i = 3 and 
the pore space i = i, 2 (Fig. 2c). We can determine the effective thermal conductivity of 
a binary system with interpenetrating components on the basis of the following formula [5, 7]: 

= c z + v (  1_c)2 + 2v(1--c)e 
- -  , ~ ::= ~ 1 2 / ~ 3 .  ( 4 )  

~ 1 - -  c - 6  vc 

The parameter c = s is determined from the solution of the cubic equation [7] 

m = 2 c  ~ - 3 c  2 +  1, (5) 

where m is the porosity of the material. 

Let us examine a method for determining the diffusion resistance coefficient ~. For 
the one-dimensional case, according to Fick's law, the vapor flow I is proportional to the 
concentration gradient dn/dx and the cross-sectional area S of the flow: 

I = D dx S. (6) 

The vapor flow I through the porous body passes through twisting pores with an aver- por 
age cross section Spo r and a length s Fick's law in this case can be expressed by the rela- 
tionship 

/pot :D[-~71 por=D T - Spor (7) 

Here, T denotes the extent of pore twisting, which is associated with the thickness of the 
porous material L by the relationship s = TL. 

Let us replace the real pore space by the effective rectilinear pore channel of length 
L, z = i, the area S of the transverse cross section, and some effective vapor diffusion 
coefficient Dpor, i.e., 

~or L~ [ d l t t  = I-- (8) P~ i ttX I S. 

Equa t ing  (7) and (8) and c a r r y i n g  ou t  t he  t r a n s f o r m a t i o n s ,  we o b t a i n  

D S ~ . . . . . . .  T ~ (9) 
�9 ~por S por 
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Formula (9)  has been proposed by Krisher for the determination of ~ by means of the 

twisting factor �9 and the relative pore area S/Spo r [i]. This formula is contradictory, 
since for moisture contents of m close to i, Spor tends to 0 and, consequently, p will tend 
toward infinity. This latter situation is physically invalid, since with large moisture 
contents the vapor will actually diffuse only within the limits of the vapor-gas bubble in 
the pore space, and in this case will experience virtually no resistance, i.e., ~ will tend 
toward i. 

Let us examine a method of calculating the diffusion resistance factor ~ in moist por- 
ous materials on the basis of a model for a structure with interpenetrating components made 
of a solid skeleton and a pore space together with a liquid. We will assume that the vapor 
does not diffuse completely identically through the entire distance from the point of 
vaporization to the point of condensation, but that a portion of the vapor may condense at 
segments of the pore that are closer to the point of vaporization. In analogy with electri- 
cal resistance, let us introduce diffusion resistance R D for a channel of length s and of 
cross-sectional area S: 

l 

D--S- (io) 

Utilizing (i0) with consideration of (9) it is not difficult to obtain an expression 
for ~: 

D ~l S l~ SD =R__Dpo r 
. . . . .  ( l l )  

/)per l Spo r DSpo r l Ro 

We w i l l  u s e  R D p o r  = s  t o  d e n o t e  t h e  d i f f u s i o n  r e s i s t a n c e  o f  t h e  p o r e s .  

L e t  us  exam i ne  a p o r e  c h a n n e l  c o n s i s t i n g  o f  two s e q u e n t i a l l y  c o n n e c t e d  s e g m e n t s  o f  t r a n s -  
v e r s e  c r o s s - s e c t i o n a l  a r e a  S1 and S 2 (S 1 > $2) , w i t h  l e n g t h s  o f  s and s ( F i g .  3 a ) .  We 
w i l l  c a r r y  o u t  t h e  a d i a b a t i c  s u b d i v i s i o n  o f  t h e  c h a n n e l  by means o f  s u r f a c e s  p a r a l l e l  t o  
t h e  d i r e c t i o n  o f  t h e  d i f f u s i o n  f l o w  and c o i n c i d e n t  w i t h  t h e  s i d e  s u r f a c e s  o f  t h e s e  s e g m e n t s .  
The v a p o r ,  on v a p o r i z a t i o n  f rom t h e  l e f t  b o u n d a r y ,  w i l l  d i f f u s e  b o t h  w i t h i n  t h e  c h a n n e l  o f  
c r o s s - s e c t i o n a l  a r e a  S 1 - S= o v e r  a l e n g t h  s ( i n  t h i s  c a s e ,  on p a s s a g e  o f  l e n g t h  s i t  w i l l  
c o n d e n s e  on t h e  o p p o s i t e  f a c e  b o u n d a r y  o f  t h e  c h a n n e l )  as  w e l l  a s  w i t h i n  a n o t h e r  s egmen t  
w i t h  a c r o s s - s e c t i o n a l  a r e a  S 2 o v e r  a d i s t a n c e  (s + s  

The d i f f u s i o n  r e s i s t a n c e s  o f  t h e s e  s e g m e n t s  w i l l  be  d e t e r m i n e d  in  t h e  f o l l o w i n g  manner :  

ll , R 2 D :  l t+12  (12) 
R'D = D (--S~ - -  S2) DS-----~,. 

The e q u i v a l e n t  c i r c u i t  c o n n e c t i n g  t h e  r e s i s t a n c e s  i s  shown in  F i g .  3b. I n  c o n n e c t i o n  
w i t h  t h e  f a c t  t h a t  t h e  d i m e n s i o n s  o f  t h e  p o r e s  a r e  s m a l l  in  c o m p a r i s o n  w i t h  t h e  c h a r a c t e r -  
i s t i c  d i m e n s i o n s  o f  t h e  p o r o u s  b o d i e s  and ,  c o n s e q u e n t l y ,  t h e  t e m p e r a t u r e  d i f f e r e n c e  a c r o s s  
o p p o s e d  p o r e  s e g m e n t s  i s  n o t  g r e a t ,  wh ich  in  t u r n  l e a d s  t o  a s m a l l  d i f f e r e n c e  in  t h e  p a r t i a l  
v a p o r  p r e s s u r e  a c r o s s  t h e  l e n g t h  o f  t h e  c h a n n e l ,  we w i l l  a ssume t h a t  t h e  p a r t i a l  v a p o r  p r e s -  
s u r e  v a r i e s  l i n e a r l y  t h r o u g h  t h e  l e n g t h  o f  t h e  c h a n n e l .  T a k i n g  t h i s  i n t o  c o n s i d e r a t i o n ,  
t h e  e x p r e s s i o n  f o r  t h e  d i f f u s i o n  r e s i s t a n c e  o f  t h e  e n t i r e  c h a n n e l  w i l l  h a v e  t h e  fo rm 

l~ )-1 
RDpor = R:2~ -~ R~ 11 -~- l., (13) 

We will substitute the diffusion resistance of the pore space between the vaporization 
segment and the first condensation segment into formula (ii) for R D to yield: 

Ii 

RD = DS1 " 

For a pore channel consisting of three segments, the diffusion resistance is determined 
in similar fashion: 

where 

RD p o r =  ( Rj~ + R ~  lt +12 + lu + R_~lD l! + lz + I3)--' 
11 Jr l,, ll , ( 1 4 )  

R l ~  = ll ; R2 ~ _ l~ + 1.2 ; 
( S i -  S~.) D (S., - -  $3) D 
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Fig. 3. Pore channel with two condensation segments: a) schem- 
atic representation of channel; b) equivalent circuit. 
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Fig. 4. Calculation and experimental results: a) critical mois- 
ture contents as functions of the wetting angle with an average 
porosity range of m = 0.2-0.8; i) m'(O); 2) m"(%); b) the coeffi- 
cient of diffusion resistance as a function of moisture content 
for various wetting angles; i) m = 0.4, 0 = 90~ 2) m = 0.8, % = 
90~ 3) m = 0.4, 0 = 0~ 4) m = 0.8, % = 0~ experimental data 
[9]: 5) porous glass filters (m = 0.4); 6) foam concrete (m ~ 0.8); 
c, d) effective thermal conductivity of moist porous materials as 
a function of moisture content at various temperatures: c) foam 
concrete (m = 0.8), saturated with water; d) porous glass (m 
0.4), saturated with water; 1-3) model calculation with % = 0~ 
4-6) model calculation with ~ = 90~ i, 4) T = 94~ 2, 5) 83~ 
3, 6) 50~ 7-9) experimental data: 7) T = 94~ 8) 83~ 9) 
50~ ~, W/(m'K); %, deg. 

R3D -- - ; ($2 - -  S~) D 

~1, s and s a r e  t h e  segment  l e n g t h s ;  Sz,  $2,  and S 3 a r e  t h e  a r e a s  o f  t h e  t r a n s v e r s e  c r o s s  
s e c t i o n s  o f  t h e  s e g m e n t s .  

C o r r e s p o n d i n g l y ,  t h e  r e s i s t a n c e  c o e f f i c i e n t  p in  t h i s  c a s e  w i l l  be e q u a l  t o :  

RDpo r ( R3--~ -}- RV-~ l~ + l~ + ls It + I~ -~ l.~ ) - l  
6 + t.: + RF~ t, ( 15 ) 

= ---Ro No 

Using this method, we will determine p as a function of porosity m, moisture content 
~, and the wetting angle O, employing the model of moist porous materials (see Fig. i). We 
will subdivide the elementary cell by planes parallel to the diffusion flow of the vapor, 
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Fig. 5. Distribution of the fluid in the skeleton and pore space 
of the structure for critical values of the moisture content and 
for various wetting angles: a) ~' = 0.16, % = 00; b) ~" = 0.85, 
% = 0~ c) m' = 0.41, % = 45~ d) ~" = 0.96, % = 45~ e) ~' = 
0.72, % = 90~ f) ~" = 0,99, % = 90 ~ . 

and in this case a number of pore channels connected in parallel are formed with a trans- 
verse cross-sectional area S i and length s (i denotes the number of the channel). 

The values of S i and s for each of the channels is determined from the dimensions of 
the structural elements in the model of moist porous materials. Further, having determined 
the diffusion resistance RiD of these channels and using formulas (13)-(15), we find the 
coefficient of diffusion resistance ~ as a function of m, m, and %. The relationship bet- 
ween the geometric parameters of the structure and the concentration of the components is 
given in Appendix 2. Figure 4b shows the calculated relationships between~ and m for the 
cases m = 0.8 and m = 0.4 when % = 0 and 90 ~ . 

The functions % = %(m, T), calculated by means of the proposed method based on formulas 
(1)-(4) and Fig. 4a, b for a broad range of the wetting angle % = 0-90 ~ , and the experimen- 
tal data for the foam concrete (m = 0.8) and the porous glass (m = 0.4), saturated With water 
at various temperatures T, are shown in Fig. 4c, d. Good agreement is shown between the 
results from the calculations and the experiments for the case in which % = 0 ~ . As we can 
see from the plots, the curves for % = 0 and 90 ~ up to moisture contents on the order of 
0.2 are virtually coincident. For large values of ~ the thermal conductivities of the moist 
materials may differ significantly, depending on the wetting angle. Analogous results were 
obtained for disperse materials by the authors of [3] in which it is demonstrated that, de- 
pending on %, the value of the thermal conductivity may differ by a factor of more than 4. 
This is explained by the influence on ~ of the nature of the liquid distribution in the pore 
space which, in turn, is determined by the wetting angle %. An example of the calculation 
of I is presented in Appendix 3. 

APPENDIX i 

Determination of Critical Moisture-Content Values ~' and ~". Let us examine the influ- 
ence on the threshold values of the moisture content in moist porous materials as exerted 
by the magnitude of the wetting angle of the liquid from the solid skeleton. Figure 5 shows 
the elementary cell of the structure divided into eighths, with interpenetrating components 
for critical moisture-content values of m = m' and m = m" for wetting angles of % = 0, 45, 
and 90 ~ . The magnitude of the moisture content m is associated by definition with the liquid 
volume Vs and the pore volume Vpo r by the relationship ~ = Vs r. We will find the value 
of m' for one of the cases such-as, for example, % = 45 ~ . It follows from Fig. 5c that V Z = 
3V l § V2, V I = 0.5A(L -- A) 2, V 2 = (L - A)~/6. The pore volume is equal to Vpo r = (L " A) ~ + 
3A(L -- A) 2. Consequently, the critical value of the moist content ~' for the case under 
consideration is equal to 
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1 (L- -  A)~ + 3 
1 1 @ 8 c  

. . . .  , c = A/L. 
(L -- A) 2 (L -]- 2A) 6 1 -t- 2c 

We can obtain the values of w' and m" in analogous fashion for other wetting angles. 
Figure 4a shows m' and ~" as functions of 8. 

APPENDIX 2 

Determination of the Relationships between the Geometric Structural Parameters and Com- 
ponent Concentrations. Let us examine a model of a moist porous material for the case in 
which m < ~'. Let us assume that the liquid in the form of isolated inclusions is to be 
found at the corners of an ordered lattice. For simplicity we will assume that the liquid 
assumes a shape in the form of the totality of rectangular parallelepipeds of altitude a 
(see Fig. la). Let us establish the relationship between the relative dimension A = a/L 
and the moisture content ~. By definition V~ = m~L 3. Let us express the volume V~ in terms 

of a, i.e., V~ = a 3 + 3a=A, and from these expressions we will find the relationship linking 
and A: 

A 3 + 3A2c = mo). 

By solving the derived cubic equation for given values of ~ and m we can determine A. 
Let us assume that when ~ > w' the increase in the volume of the liquid in the central por- 
tion of the cell is curtailed and liquid interlayers of thickness x begin to form along the 

cross bars (Fig. ib). The value of B = x/L as a function of ~ and m can be determined from 
the following expression: 

L:~tn (~o - -  o)') == 3x  z (L - -  A - -  a,, 0 @ 6 x A  (L - -  A - -  am), 

where a m is the maximum value of a corresponding to the moisture content m'. Solving the 
given quadratic equation, we find B: 

m ( ( o - - o ) ' )  

3 ( 1 - - c - - A m )  
- -  c, Am = a ~ L .  

With a further increase in m we will assume that the increase in the liquid volume comes 
about without touching the central portion of the cell, but only as a consequence of filling 
the segments of thickness f between the crossbars (Fig. ic). The volume of air contained 
in the pore space of the elementary cell L3m(l - ~) will be equal to 

L3m ( i - -  o~) = (L - -  am - -  A) 3 @ 3 (A -6  a~) f2. 

Solving the obtained equation for F = f/L, we find: 

P m ( 1 A,,, - -  cp  F =  | /  - -  ( o ) - -  (1 - -  
V :3 (e + A,,O 

For a moisture content of ~* = 1 - [(i - A m - c)3/m], F will be equal to 0. Cor- 

respondingly, when ~ > ~* the vapor gas mixture in the pores will appear inthe form of isolated 
inclusions. Let us assume that these inclusions are in the shape of a cube with an edge 
length 2g (Fig. id). The quantity G = g/L can be determined from the equation 

L:'m (I - -  u~) .... g:*. 

Correspondingly, the relative dimension G will be equal to 

6 = V F f ( l  - -  , 0 .  

APPENDIX 3 

Calculation of Foam-Concrete Thermal Conductivity (m = 0.8) When m = 0.2, T = 83~ 

= 0 ~ From formula (3) we will determine the diffusion component of thermal conductivity 
% v for T = 356 K; from handbook sources we find [i0]: M = 0.018 kg/mole; R = 8.31 J/(mole'K); 
P = 101,300 Pa: Pv = 53,000 Pa; dPv/dT = 2150 Pa/K; r = 2.30-106 J/kg; ~ = 2.8 (see Fig. 4b), 
D = 3.5-i0 -S m2/sec. 
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As a result we obtain I v = 0.92 W/(m'K) with consideration of I~ : 0.03 W/(m.K), 12 = 
( ) 0.95 W/(m'K). Using formulas i and (2) we will determine the effective thermal conductiv- 

ity Iz2 of the pore space [assuming the thermal conductivity of the liquid i I = 0.65 W/(m.K)]. 
For convenience in calculation we will exchange the subscripts for the components. Here 
I l' = 12 = 0.95 W/(m.K), 12 ' = 11 = 0.65 W/(m.K), m 2 = m = 0.2, v = 12'/I I ' = 0.68. From 
the formula we determine 112/I I ' = 0.97, so that consequently, 112 = 0.92 W/(m.K). 

In the second stage of the calculation, using formula (4), we find the effective thermal 
conductivity of the moist porous material. Here 11 = 2.33 W/(m-K), 12 = ll~ = 0.92 W/(m-K), 
m = 0.8, ~ = 12/11 = 0.39. From the formula we determine 1/11 = 0.48, so that consequently 
I = i.i W/(m.K). The differences between the calculated relationships and the experimental 
data fall within the limits of the initial information (20%). 

NOTATION 

kv, diffusion component of thermal conductivity, W/(m'K); D, coefficient of vapor diffu- 
sion in the air for an unbounded space, m2/sec; DDor, vapor diffusion coefficient in air 
for the pore space, m /sec; M, molecular mass of the vapor, kg/mole; T, vapor temperature, 
K; R, universal gas constant, J/(mole.K); P, total vapor pressure in the air, Pa; Pv, partial 
vapor pressure, Pa; r, heat of liquid vaporization, J/kg; I, vapor flow in an unbounded space, 
kg/sec; Jpor, vapor flow in the porous body, kg/sec; n, vapor concentration, kg/m3; S, area 
through which the vapor diffuses in unbounded space, m2; Spor, area through which the vapor 
diffuses in the porous body, m2; 2, length of the pore segment along which the vapor dif- 
fuses, m; x, twisting factor of the pores; p, coefficient of vapor diffusion resistance in 
the porous body; m, moisture content; ~', m", critical moisture-content values; m, porosity; 
L, length of i/8 of the elementary cell, m; Vs volume of the liquid phase, m3; Vpor, 
volume of the pore space, m3; A, dimension of the skeletal crossbar in the elementary cell, 
m; c, parameter which links the geometric dimensions of the model of the porous body with 
porosity; %, wetting angle, deg; RD, diffusion resistance, sec/m 3. 
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